Boson Normal Ordering via Substitutions and Sheffer-type Polynomials
نویسنده
چکیده
We solve the boson normal ordering problem for (q(a)a + v(a)) with arbitrary functions q and v and integer n, where a and a are boson annihilation and creation operators, satisfying [a, a] = 1. This leads to exponential operators generalizing the shift operator and we show that their action can be expressed in terms of substitutions. Our solution is naturally related through the coherent state representation to the exponential generating functions of Sheffer-type polynomials. This in turn opens a vast arena of combinatorial methodology which is applied to boson normal ordering and illustrated by a few examples.
منابع مشابه
Representations of Monomiality Principle with Sheffer-type Polynomials and Boson Normal Ordering
We construct explicit representations of the Heisenberg-Weyl algebra [P, M ] = 1 in terms of ladder operators acting in the space of Sheffer-type polynomials. Thus we establish a link between the monomiality principle and the umbral calculus. We use certain operator identities which allow one to evaluate explicitly special boson matrix elements between the coherent states. This yields a general...
متن کاملMonomiality principle, Sheffer-type polynomials and the normal ordering problem
We solve the boson normal ordering problem for ( q(a†)a+ v(a†) )n with arbitrary functions q(x) and v(x) and integer n, where a and a† are boson annihilation and creation operators, satisfying [a, a†] = 1. This consequently provides the solution for the exponential e †)a+v(a†)) generalizing the shift operator. In the course of these considerations we define and explore the monomiality principle...
متن کاملApproximate substitutions and the normal ordering problem
In this paper, we show that the infinite generalised Stirling matrices associated with boson strings with one annihilation operator are projective limits of approximate substitutions, the latter being characterised by a finite set of algebraic equations. 1. Introduction The series of papers [1, 2, 3] had two sequels. First one, algebraic, was the construction of a Hopf algebra of Feynman-Bender...
متن کاملCombinatorial coherent states via normal ordering of bosons
Abstract. We construct and analyze a family of coherent states built on sequences of integers originating from the solution of the boson normal ordering problem. These sequences generalize the conventional combinatorial Bell numbers and are shown to be moments of positive functions. Consequently, the resulting coherent states automatically satisfy the resolution of unity condition. In addition ...
متن کاملHierarchical Dobiński-type relations via substitution and the moment problem
We consider the transformation properties of integer sequences arising from the normal ordering of exponentiated boson ([a, a] = 1) monomials of the form exp[λ(a)a], r = 1, 2, . . ., under the composition of their exponential generating functions (egf). They turn out to be of Sheffer-type. We demonstrate that two key properties of these sequences remain preserved under substitutional compositio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005